Abstract

Detailed soil survey of Sreekrishnapuram panchayat (2956 ha) was undertaken as a part of the centrally sponsored scheme, RSVY to prepare an inventory of the soil, land and water resources of the panchayat and for assessing soil fertility to refine the current general fertilizer recommendations for enhancing the productivity of rice. The soil perspective and its role in improving agricultural production and productivity are given special stress during the survey.

Six soil series were identified in the panchayat during the soil survey of the panchayat. Out of these, three soil series namely Pariyanampatta, Thanikunnu and Ramanpalliyal are the series in low lying lands which are mainly under paddy cultivation. The rest three soil series namely Kinasseri, Pookottukavu and Sreekrishnapuram are identified in uplands which are mainly cultivated with rubber, coconut, banana and vegetables.

The soil mapping units representing different types and phases under each soil series were identified. Systematic collection of surface samples were done from each land parcels and these samples were subjected to detailed analysis for macro and micro nutrients and other soil properties which directly affect the plant growth. The results were systematically arranged in this report and detailed descriptions of each management units are given with specific recommendations based on soil fertility analysis. Various interpretative maps are also prepared for easy understanding. The soils identified in the panchayat are classified as per the USDA Soil Taxonomic Classification System which enables information exchange and better understanding of soils.

The soil reaction, electrical conductivity and content of available macronutrients were determined for the composite surface samples from each land parcel.

Nearly one fourth of the samples collected from land parcels in the upland and low land region were strongly acid in reaction and nearly half of the samples were very strongly acid. The remaining samples showed extreme
acidity. These soils require liming to neutralize acidity. The soil fertility map provides lime requirement for each parcel of land.

Majority of the samples collected from uplands and low lands were low in nitrogen and potassium which is indicative of deficiency of both these primary nutrients. Nearly 70 per cent of the samples were low in nitrogen, 40 per cent was low in phosphorus and 75 per cent of the samples were low in potassium. In land parcels testing low for primary nutrients it is desirable to apply these nutrients at 125% of the recommended dosage. In areas testing medium, the full recommended dosage is to be applied and in areas testing high only 60 per cent of the recommended dosage need to be applied. About eighty per cent of the samples tested adequate for zinc and ninety six per cent of the samples tested adequate for copper. Since the land parcels are generally adequate in zinc and copper, external application of these micronutrients is not warranted.

Adequate quantities of organic matter should also be ensured. Nitrogen status of the soil can be enhanced by cultivation of leguminous green manure crops. In dry sown rice cowpea seeds may be sown at the rate of 12.5 kg/ha and incorporated into the soil at flowering stage. Green manure crops like Dhaincha may be sown after pre monsoon showers and subsequently incorporated into the soil. This practice is widely prevalent in Palakakkad district and needs to be encouraged by supplying seeds and planting material of green manure crops at subsidized rates. Methods may be adopted to improve fertilizer use efficiency. Methods to reduce loss of nitrogen through volatalisation, leaching and nitrification may be popularized. To reduce loss of Nitrogen, it may be incorporated well with soil in basal dose application. To reduce leaching loss of nitrogen from fertilizers like urea during top dress, it may be mixed thoroughly with about six times the quantity of soil and kept for 24 hours before sowing. To reduce nitrification loss, fertilizers like urea may be mixed well with powdered neem cake in the ratio 1:5 and applied. Copper and zinc was found to be adequate in most samples hence external input of these nutrients is not necessary. However in land parcels showing deficit values for
these nutrients, foliar application of these nutrients is recommended. As a cheaper alternative for foliar application seed dip of these micronutrients is recommended. The recommendation for zinc is dipping for 24 hours before sowing in 1% zinc sulphate solution @ 1 litre of micronutrient solution / kg of seeds and that for copper is dipping the seeds for 24 hours in 0.25% Copper sulphate solution @ 1 litre / kg of seeds.

Information on the level of plant nutrients may be gathered from the soil fertility map and the nutrients may be applied to crops. The organic matter status of the soil may be enhanced by return of crop residues to the soil, raising green manure crops and ploughing them in and regularly adding farmyard manure and or compost.